Minimum detection efficiency for testing a multi-particle Bell inequality

Author:

Ma Wenchao,Chen Peng,Ma XiaosongORCID

Abstract

Abstract Bell’s inequality provides a remarkable way to test the consistency between quantum mechanics and classic local realistic theory. However, experimental demonstrations of the loophole-free Bell test are challenging and only recently have been demonstrated with bipartite systems. A central obstacle for the photonic system is that the sampling efficiency, including the collection and detection efficiencies, must be above a certain threshold. We here generalize two-particle Eberhard’s inequality to the n-particle systems and derive a Bell-type inequality for multi-particle systems, which significantly relaxes this threshold. Furthermore, an experimental proposal to achieve a multi-partite Bell test without the fair sampling assumption is presented for the case of three particles. For any given value of the sampling efficiency, we give the optimal configurations for actual implementation, the optimal state, the maximum background noise that the system can tolerate, and the lowest fidelity of the quantum state. We believe our work can serve as a recipe for experimentalists planning to violate local realism using a multi-partite quantum state without the sampling loophole.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3