Mean-field elastic moduli of a three-dimensional, cell-based vertex model

Author:

Kim KyungeunORCID,Zhang TaoORCID,Schwarz J M

Abstract

Abstract The mechanics of a foam depends on bubble shape, bubble network topology, and the material at hand, be it metallic or polymeric, for example. While the shapes of bubbles are the consequence of minimizing surface area for a given bubble volume in a space-filling packing, if one were to consider biological tissue as a foam-like material, the zoology of observed shapes of cells perhaps motivates different energetic contributions. Building on earlier two-dimensional results, here, we focus on a mean field approach to obtain the elastic moduli for an ordered, three-dimensional vertex model. We use the space-filling shape of a truncated octahedron and an energy functional containing a restoring surface area spring and a restoring volume spring. The tuning of the three-dimensional shape index exhibits a rigidity transition via a compatible–incompatible transition. Specifically, for smaller shape indices, both the target surface area and volume cannot be achieved, while beyond some critical value of the three-dimensional shape index, they can be, resulting in a zero-energy state. In addition to analytically determining the location of the transition in mean field, we find that the rigidity transition and the elastic moduli depend on the parameterization of the cell shape. This parameterization effect is more pronounced in three dimensions than in two dimensions given the zoology of shapes that a polyhedron can take on (as compared to a polygon). We also uncover nontrivial dependence of the elastic moduli on the deformation protocol in which some deformations result in affine motion of the vertices, while others result in nonaffine motion. Such dependencies on the shape parameterization and deformation protocol give rise to a nontrivial shape landscape and, therefore, nontrivial mechanical response even in the absence of topology changes.

Funder

Division of Physics

National Natural Science Foundation of China

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral approaches to stress relaxation in epithelial monolayers;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-09

2. A two-dimensional vertex model for curvy cell–cell interfaces at the subcellular scale;Journal of The Royal Society Interface;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3