Driving quantum correlated atom-pairs from a Bose–Einstein condensate

Author:

Chih Liang-Ying,Holland Murray

Abstract

Abstract The ability to cool quantum gases into the quantum degenerate realm has opened up possibilities for an extreme level of quantum-state control. In this paper, we investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose–Einstein condensate by the periodic modulation of the two-body s-wave scattering length. This shows a capability to selectively amplify quantum fluctuations with a predetermined momentum, where the momentum value can be spectroscopically tuned. A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal in nonlinear optics. For this reason, it may be anticipated that the evolution will generate a ‘squeezed’ matter-wave state in the quasiparticle mode on resonance with the modulation frequency. Our model and analysis is motivated by a recent experiment by Clark et al that observed a time-of-flight pattern similar to an exploding firework (Clark et al 2017 Nature 551 356–9). Since the drive is a highly coherent process, we interpret the observed firework patterns as arising from a monotonic growth in the two-body correlation amplitude, so that the jets should contain correlated atom pairs with nearly equal and opposite momenta. We propose a potential future experiment based on applying Ramsey interferometry to experimentally probe these pair correlations.

Funder

Division of Physics

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3