Robust and broadband integrated terahertz coupler conducted with adiabatic following

Author:

Huang WeiORCID,Yin ShanORCID,Zhang Wentao,Wang Kaili,Zhang Yuting,Han Jiaguang

Abstract

Abstract As the key concept in fabricating integrated device, surface plasmon-polaritons (SPPs) have been widely employed to artificially manipulate the electromagnetic waves in metallic surfaces. However, due to the highly structure-dependent resonance of SPPs, it is challengeable to develop a fixed device which can function at wide band. Here, we propose a novel broadband and robust SPPs directional coupler based on the tri-layered curved waveguides working at terahertz (THz) frequencies, where the coupling of SPPs between the adjacent waveguides can be modeled with coupled mode theory. By introducing the stimulated raman adiabatic passage quantum control technique, we achieve the complete transfer of SPPs from the input to the output waveguides in the range of 0.9–1.3 THz, and even considering the propagation loss, the transfer rate is still above 70%. Furthermore, the performance of our device is eminently robust because of its insensitivity to the geometry of structure and the wavelength of SPPs. As a result, our device can tolerate defect induced by fabrication processing and manipulate THz waves at broadband. This finding provides a new theoretical guideline in promoting THz on-demand applications, which is of significance in developing integrated THz devices.

Funder

National Science and Technology Major Project

National Natural Science Foundation of China

Science and Technology Program of Guangxi Province

Natural Science Foundation of Guangxi Province

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference39 articles.

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bifunctional acoustic lossy coupler for broadband power splitting and absorption;Applied Acoustics;2025-01

2. Reducing the coupling of metamaterial via random configuration;Applied Physics Letters;2024-08-19

3. Inverse Design of Quasi-Bound States in the Continuum Absorber;IEEE Journal of Quantum Electronics;2024-06

4. A New Method for Inverse Designing Metasurfaces of Bound States in the Continuum;2023 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC);2023-11-10

5. Coupling-Assisted Quasi-Bound States in the Continuum in Heterogeneous Metasurfaces;IEEE Journal of Selected Topics in Quantum Electronics;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3