Abstract
Abstract
Unraveling the origin of ultrafast demagnetization in multisublattice ferromagnetic materials requires femtosecond x-ray techniques to trace the magnetic moment dynamics on individual elements, but this could not yet be achieved in the hard x-ray regime. We demonstrate here the first ultrafast demagnetization dynamics in the ferromagnetic heavy 5d-transition metal Pt using circularly-polarized hard x-rays at an x-ray free electron laser (XFEL). The decay time of laser-induced demagnetization of L10-FePt is determined to be
τ
Pt
=
0.61
±
0.04
ps
using time-resolved x-ray magnetic circular dichroism at the Pt L3 edge, whereas magneto-optical Kerr measurements indicate the decay time for the total magnetization as
τ
total
<
0.1
ps
. A transient magnetic state with a photo-modulated ratio of the 3d and 5d magnetic moments is demonstrated for pump–probe delays larger than 1 ps. We explain this distinct photo-modulated transient magnetic state by the induced-moment behavior of the Pt atom and the x-ray probing depth. Our findings pave the way for the future use of XFELs to disentangle atomic spin dynamics contributions.
Subject
General Physics and Astronomy
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献