Abstract
Abstract
The superconductivity of the FeSe-based superconductor is extremely sensitive to Fe vacancies in the FeSe plane. In order to reduce the formation of Fe vacancies in the FeSe plane, various low-temperature methods are developed. However, it is still complex and time consuming to control the Fe vacancies concentration. Here, a hybrid iron-based superconductor, Li0.21Se0.05(EG)0.26FeSe (EG: ethylene glycol, C2H6O2), is synthesized by a solvothermal ion-exchange technique using a nearly vacancy-free precursor of (TBA)0.3FeSe as the matrix. Bulk superconductivity with transition temperature (T
c) of 30 K is confirmed by the characterization with the magnetic susceptibility and resistivity measurements. Compared with the pristine FeSe single crystal, x-ray photoelectron spectroscopy results show a decrease of the Fe valence, indicating that electron doping to FeSe plane accounts for the increase of the T
c. Our result suggests that (TBA)0.3FeSe, a nearly vacancy-free precursor with a large distance between the adjacent FeSe planes, is a good template candidate for the synthesis of other hybrid iron-based superconductors using the ion exchange technique.
Funder
the Key Research Program of Frontier Sciences, CAS, China
the Science Challenge Project of China
Anhui Initiative in Quantum Information Technologies
the Strategic Priority Research Program of Chinese Academy of Sciences
the National Key Research and Development Program of the Ministry of Science and Technology of China
National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献