Phononic-subsurface flow stabilization by subwavelength locally resonant metamaterials

Author:

Kianfar ArminORCID,Hussein Mahmoud IORCID

Abstract

Abstract The interactions between a solid surface and a fluid flow underlie dynamical processes relevant to air, sea, and land vehicle performance and numerous other technologies. Key among these processes are unstable flow disturbances that contribute to fundamental transformations in the flow field. Precise control of these disturbances is possible by introducing a phononic subsurface (PSub). This comprises locally attaching a finite phononic structure nominally perpendicular to an elastic surface exposed to the flowing fluid. This structure experiences ongoing excitation by an unstable flow mode, or more than one mode, traveling in conjunction with the mean flow. The excitation generates small deformations at the surface that trigger elastic wave propagation within the structure, traveling away from the flow and reflecting at the end of the structure to return to the fluid-structure interface and back into the flow. By targeted tuning of the unit-cell and finite-structure characteristics of the PSub, the returning waves may be devised to resonate and reenter the flow out of phase, leading to significant destructive interference of the continuously incoming flow waves near the surface and subsequently to their attenuation over the spatial extent of the control region. This entire mechanism is passive, responsive, and engineered offline without needing coupled fluid-structure simulations; only the flow instability’s frequency, wavelength, and overall modal characteristics must be known. Disturbance stabilization in a wall-bounded transitional flow leads to delay in laminar-to-turbulent transition and reduction in skin-friction drag. Destabilization is also possible by alternatively designing the PSub to induce constructive interference, which is beneficial for delaying flow separation and enhancing chemical mixing and combustion. In this paper, we present a PSub in the form of a locally resonant elastic metamaterial, designed to operate in the elastic subwavelength regime and hence being significantly shorter in length compared to a phononic-crystal-based PSub. This is enabled by utilizing a sub-hybridization resonance. Using direct numerical simulations of channel flows, both types of PSubs are investigated, and their controlled spatial and energetic influence on the wall-bounded flow behavior is demonstrated and analyzed. We show that the PSub’s effect is spatially localized as intended, with a rapidly diminishing streamwise influence away from its location in the subsurface.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3