Data-driven inference of physical devices: theory and implementation

Author:

Buscemi Francesco,Dall’Arno Michele

Abstract

Abstract Given a physical device as a black box, one can in principle fully reconstruct its input–output transfer function by repeatedly feeding different input probes through the device and performing different measurements on the corresponding outputs. However, for such a complete tomographic reconstruction to work, full knowledge of both input probes and output measurements is required. Such an assumption is not only experimentally demanding, but also logically questionable, as it produces a circular argument in which the characterization of unknown devices appears to require other devices to have been already characterized beforehand. Here, we introduce a method to overcome such limitations present in usual tomographic techniques. We show that, even without any knowledge about the tomographic apparatus, it is still possible to infer the unknown device to a high degree of precision, solely relying on the observed data. This is achieved by employing a criterion that singles out the minimal explanation compatible with the observed data. Our method, that can be seen as a data-driven analog of tomography, is solved analytically and implemented as an algorithm for the learning of qubit channels.

Funder

Japan Society for the Promotion of Science

National Research Fund and the Ministry of Education, Singapore

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3