Gaussian Information Bottleneck and the Non-Perturbative Renormalization Group

Author:

Kline Adam GordonORCID,Palmer Stephanie

Abstract

Abstract The renormalization group (RG) is a class of theoretical techniques used to explain the collective physics of interacting, many-body systems. It has been suggested that the RG formalism may be useful in finding and interpreting emergent low-dimensional structure in complex systems outside of the traditional physics context, such as in biology or computer science. In such contexts, one common dimensionality-reduction framework already in use is information bottleneck (IB), in which the goal is to compress an ``input'' signal X while maximizing its mutual information with some stochastic ``relevance'' variable Y. IB has been applied in the vertebrate and invertebrate processing systems to characterize optimal encoding of the future motion of the external world. Other recent work has shown that the RG scheme for the dimer model could be ``discovered'' by a neural network attempting to solve an IB-like problem. This manuscript explores whether IB and any existing formulation of RG are formally equivalent. A class of soft-cutoff non-perturbative RG techniques are defined by families of non-deterministic coarsening maps, and hence can be formally mapped onto IB, and vice versa. For concreteness, this discussion is limited entirely to Gaussian statistics (GIB), for which IB has exact, closed-form solutions. Under this constraint, GIB has a semigroup structure, in which successive transformations remain IB-optimal. Further, the RG cutoff scheme associated with GIB can be identified. Our results suggest that IB can be used to impose a notion of ``large scale'' structure, such as biological function, on an RG procedure.

Funder

Division of Physics

National Institutes of Health

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3