Multiple metamagnetism, extreme magnetoresistance and nontrivial topological electronic structures in the magnetic semimetal candidate holmium monobismuthide

Author:

Wu Z M,Ruan Y R,Tang F,Zhang LORCID,Fang YORCID,Zhang J-MORCID,Han Z D,Tang R JORCID,Qian B,Jiang X F

Abstract

Abstract Inconceivably large changes (up to 106%) of the resistivity induced by external magnetic field—a phenomenon known as the extreme magnetoresistance effect has been reported in a great number of exotic semimetals. The very recent and exciting discoveries mainly pay attention to the compounds without magnetic ground states, which appears to limit the potential growth of semimetal family. For fundamental scientific interests, introduction of spin degree of freedom would provide an almost ideal platform for investigating the correlation effect between magnetism, crystallographic structure and electric resistivity in materials. Here, we report the experimental observation of metamagnetic behaviors and transport properties of HoBi single crystals. Being a magnetic member of the rare earth monopnictide family, the magnetoresistance of HoBi is significantly modulated by the magnetic orders at low temperature, which shows a nonmonotonic increment across the successive magnetic phases and reaches 104% (9 T and 2 K) in the ferromagnetic state. Kohler’s rule predicts that more than one type of carriers dominates the transport properties. Well fitted magnetoresistance and Hall resistivity curves by the semiclassical two-band model suggest that the densities of electron and hole carriers are nearly compensated and the carrier mobilities in this compound are ultrahigh. Besides, the inverted band structures and nonzero Z 2 topological invariant indicate that possible nontrivial electronic states could generate in the ferromagnetic phase of HoBi. Combining the experimental and theoretical results, it is found that the cooperative action of carrier compensation effect and ultrahigh mobility might contribute to the extreme magnetoresistance observed in the titled compound. These findings suggest a paradigm for obtaining the extreme magnetoresistance in magnetic compounds and are relevant to understand the rare-earth-based correlated topological materials.

Funder

National Natural Science Foundation of China

Natural Science Foundations of Fujian Province of China

Natural Science Foundation of Jiangsu Province

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3