Scaling theory for Mott–Hubbard transitions: I. T = 0 phase diagram of the 1/2-filled Hubbard model

Author:

Mukherjee Anirban,Lal SiddharthaORCID

Abstract

Abstract We present a T = 0 K renormalization group (RG) phase diagram for the electronic Hubbard model in two dimensions on the square lattice at half filling. The RG procedure treats quantum fluctuations in the single particle occupation number nonperturbatively via the unitarily decoupling of one electronic state at every RG step. The resulting phase diagram thus possesses the quantum fluctuation energy scale (ω) as one of its axes. A relation is derived between ω and the effective temperature scale upto which gapless, as well as emergent gapped phases can be obtained. We find that the normal and insulating phases of the half-filled Hubbard model correspond, for any on-site repulsion, to a marginal Fermi liquid normal phase and a topologically-ordered gapped Mott insulating liquid respectively. The marginal Fermi liquid is found to arise from singular forward scattering in directions normal to the nested Fermi surface, while singular backscattering events lead to Mott liquid state. The transition between these two phases involves passage through a pseudogapped phase bookended by Fermi surface topology-changing Lifshitz transitions. The pseudogap phase is observed to arise from the electronic differentiation encoded within the nested Fermi surface, and involves the gradual gapping of the Fermi surface from antinodes to nodes via charge and spin excitations that are mutually entangled. We obtain effective Hamiltonians for various phases, as well as wavefunctions for the low-energy many-body eigenstates of the Mott liquid. Benchmarking of the ground-state energy per particle and the double-occupancy fraction for the Mott liquid against existing numerical results yields excellent agreement. Presence of a Néel ordering symmetry-breaking perturbation in the RG leads to an antiferromagnetic spin-ordered charge insulating Mott state. Our results thus offer novel insights on a variety of aspects of the Mott–Hubbard problem, and can be extended to the doped system.

Funder

Council for Scientific and Industrial Research, Government of India

Science and Engineering Research Board, Government of India

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3