Spectral estimation for Hamiltonians: a comparison between classical imaginary-time evolution and quantum real-time evolution

Author:

Stroeks M EORCID,Helsen JORCID,Terhal B MORCID

Abstract

Abstract We consider the task of spectral estimation of local quantum Hamiltonians. The spectral estimation is performed by estimating the oscillation frequencies or decay rates of signals representing the time evolution of states. We present a classical Monte Carlo (MC) scheme which efficiently estimates an imaginary-time, decaying signal for stoquastic (i.e. sign-problem-free) local Hamiltonians. The decay rates in this signal correspond to Hamiltonian eigenvalues (with associated eigenstates present in an input state) and can be extracted using a classical signal processing method like ESPRIT. We compare the efficiency of this MC scheme to its quantum counterpart in which one extracts eigenvalues of a general local Hamiltonian from a real-time, oscillatory signal obtained through quantum phase estimation circuits, again using the ESPRIT method. We prove that the ESPRIT method can resolve S = poly(n) eigenvalues, assuming a 1/poly(n) gap between them, with poly(n) quantum and classical effort through the quantum phase estimation (QPE) circuits, assuming efficient preparation of the input state. We prove that our MC scheme plus the ESPRIT method can resolve S = O(1) eigenvalues, assuming a 1/poly(n) gap between them, with poly(n) purely classical effort for stoquastic Hamiltonians, requiring some access structure to the input state. However, we also show that under these assumptions, i.e. S = O(1) eigenvalues, assuming a 1/poly(n) gap between them and some access structure to the input state, one can achieve this with poly(n) purely classical effort for general local Hamiltonians. These results thus quantify some opportunities and limitations of MC methods for spectral estimation of Hamiltonians. We numerically compare the MC eigenvalue estimation scheme (for stoquastic Hamiltonians) and the quantum-phase-estimation-based eigenvalue estimation scheme by implementing them for an archetypal stoquastic Hamiltonian system: the transverse field Ising chain.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference45 articles.

1. Stoquastic PCP vs randomness;Aharonov,2019

2. Conditioning of rectangular Vandermonde matrices with nodes in the unit disk;Bazán;SIAM J. Matrix Anal. Appl.,1999

3. Monte Carlo simulation of stoquastic Hamiltonians;Bravyi;Quantum Inf. Comput.,2015

4. Polynomial-time classical simulation of quantum ferromagnets;Bravyi;Phys. Rev. Lett.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3