Abstract
Abstract
Recent advances in electron microscopy allowed the generation of high-energy electron wave packets of ultrashort duration. Here we present a non-perturbative S-matrix theory for scattering of ultrashort electron wave packets by atomic targets. We apply the formalism to a case of elastic scattering and derive a generalized optical theorem for ultrashort wave-packet scattering. By numerical simulations with 1 fs wave packets, we find in angular distributions of electrons on a detector one-fold and anomalous two-fold azimuthal asymmetries. We discuss how the asymmetries relate to the coherence properties of the electron beam, and to the magnitude and phase of the scattering amplitude. The essential role of the phase of the exact scattering amplitude is revealed by comparison with results obtained using the first-Born approximation. Our work paves a way for controlling electron-matter interaction by the lateral and transversal coherence properties of pulsed electron beams.
Funder
Kazato Research Foundation
Research Foundation for Opto-Science and Technology
Yamada Science Foundation
Independent Resaerch Fund Denmark
Gordon and Betty Moore Foundation
Japan Society for the Promotion of Science
Japan Science and Technology Agency