Fundamental physical features of resonant spontaneous bremsstrahlung radiation of ultrarelativistic electrons on nuclei in strong laser fields

Author:

Roshchupkin S PORCID,Dubov A V,Dubov V V,Starodub S SORCID

Abstract

Abstract Theoretically predicted fundamental features in the process of resonant spontaneous bremsstrahlung radiation during the scattering of ultrarelativistic electrons with energies of the order 100 GeV by the nuclei in strong laser fields with intensities up to I ∼ 1024 W cm−2. Under resonant conditions, an intermediate electron in the wave field enters the mass shell. As a result, the initial second-order process by the fine structure constant is effectively reduced to two first-order processes: laser-stimulated Compton effect and laser-assisted Mott process. The resonant kinematics for two reaction channels (A and B) is studied in detail. An analytical resonant differential cross-section with simultaneous registration of the frequency and the outgoing angle of a spontaneous gamma-quantum for channels A and B is obtained. The resonant differential cross section takes the largest value with a small number of absorbed laser photons. In this case, the resonant cross-section is determined by one parameter, depending on the small transmitted momenta, as well as the resonance width. In strong fields, spontaneous gamma quanta of small energies are most likely to be emitted compared to the energy of the initial electrons. At the same time, the angular width of the radiation of such gamma quanta is the largest. With an increase in the number of absorbed laser photons, the resonant cross-section decreases quite quickly, and the resonant frequency of spontaneous gamma quanta increases. It is shown that the resonant differential cross-section has the largest value in the region of average laser fields (I ∼ 1018 W cm−2) and can be of the order of 1 0 19 in units Z 2 α r e 2 . With an increase in the intensity of the laser wave, the value of the resonant differential cross-section R r e s max decreases and for the intensity I ∼ 1024 W cm−2 is R r e s max 1 0 7 in units Z 2 α r e 2 . The obtained results reveal new features of spontaneous emission of ultrarelativistic electrons on nuclei in strong laser fields and can be tested at international laser installations.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3