Modeling simulation on amplifying magnetic fields in supernova remnants with an intense laser

Author:

Sun WeiORCID,Lei ZhuORCID,Lv ChongORCID,Zhong Jiayong,Jin Mengqi,Wang Jianzhao,Tian Baoxian,Wang Zhao

Abstract

Abstract Local magnetic field enhancement in supernova remnants (SNRs) is a natural laboratory for studying the amplification effect of turbulent magnetic fields. In recent years, high-power laser devices have gradually matured as a tool for astronomical research that perfects observations and theoretical models. In this study, a model of the amplification effect of the turbulent magnetic field in SNRs by an intense laser is simulated using the radiation magnetohydrodynamic simulation program. We investigate and compare the evolutionary processes of unstable turbulence under different initial disturbance modes, directions, and intensities of external magnetic fields and obtain the magnetic energy spectrum and magnetic field magnification. The results demonstrate that the fluid motion associated with Rayleigh–Taylor instability will stretch the environmental magnetic field significantly, with an intensity amplified by two orders of magnitude. The environmental magnetic field perpendicular to the laser injection direction is decisive during magnetic field amplification which is necessary to clarify the physical mechanism of magnetic field amplification in SNRs. Furthermore, it will deepen the understanding of the interstellar magnetic field’s evolution. The results also establish a reference for laser-driven magnetized plasma experiments in a robust magnetic environment.

Funder

Key Programs of the Chinese Academy of Sciences

National Natural Science Foundation of China

the Strategic Priority Research Program of the Chinese Academy of Sciences

Young Talents Cultivation Fund of China Institute of Atomic Energy

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3