Necessary and sufficient conditions for the validity of Luttinger’s theorem

Author:

Heath Joshuah TORCID,Bedell Kevin S

Abstract

Abstract Luttinger’s theorem is a major result in many-body physics that states the volume of the Fermi surface is directly proportional to the particle density. In its ‘hard’ form, Luttinger’s theorem implies that the Fermi volume is invariant with respect to interactions (as opposed to a ‘soft’ Luttinger’s theorem, where this invariance is lost). Despite it is simplicity, the conditions on the fermionic self energy under which Luttinger’s theorem is valid remains a matter of debate, with possible requirements for its validity ranging from particle-hole symmetry to analyticity about the Fermi surface. In this paper, we propose the minimal requirements for the application of a hard Luttinger’s theorem to a generic fermionic system of arbitrary interaction strength by invoking the Atiyah–Singer index theorem to quantify the topologically-robust behavior of a generalized Fermi surface. We show that the applicability of a hard Luttinger’s theorem in a D-dimensional system is directly dependent on the existence of a (D − 1)-dimensional manifold of gapless chiral excitations at the Fermi level, regardless of whether the system exhibits Luttinger or Fermi surfaces (i.e., manifolds of zeroes of the Green’s function and inverse Green’s function, respectively). The exact form of the self-energy which guarantees validity of a hard Luttinger’s theorem is derived, and agreement with current experiments, numerics, and theories are discussed.

Funder

John H. Rourke Endowment Fund

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference158 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3