Abstract
Abstract
Vacuum fluctuations are known to produce electron diffraction leading to decoherence and self-interference. These effects have so far been studied as either an extension of the Aharonov–Bohm effect in front of a planar perfect conductor or through path integral analysis. Here, we present a simpler, general, and rigorous derivation based on a direct solution of the quantum electrodynamic aloof interaction between the electron and a material structure in the temporal gauge. Our approach allows us to study dissipative media, for which we show examples of electron wave function shaping due to the interaction with real-metal surfaces. We further present a proof of the relation between the phase associated with vacuum fluctuations and the Aharonov–Bohm effect produced by the image self-interaction that is valid for arbitrary geometries. Besides their fundamental interest, our results could be useful for on-demand patterning of electron beams with potential application in nondestructive nanoscale imaging and spectroscopy.
Funder
H2020 European Research Council
Secretaría de Estado de Investigación, Desarrollo e Innovación
European Commission
Subject
General Physics and Astronomy
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献