Robust orbital diamagnetism in correlated Dirac fermions

Author:

Tada YasuhiroORCID

Abstract

Abstract We study orbital diamagnetism at zero temperature in (2 + 1)-dimensional Dirac fermions with a short-range interaction which exhibits a quantum phase transition to a charge density wave (CDW) phase. We introduce orbital magnetic fields into spinless Dirac fermions on the π-flux square lattice, and analyze them by using infinite density matrix renormalization group. It is found that the diamagnetism remains intact in the Dirac semimetal regime, while it is monotonically suppressed in the CDW regime. Around the quantum critical point of the CDW phase transition, we find a scaling behavior of the diamagnetism characteristic of the chiral Ising universality class. Besides, the scaling analysis implies that the robust orbital diamagnetism at weak magnetic fields in a Dirac semimetal regime would hold not only in our model but also in other interacting Dirac fermion systems as long as scaling regions are wide enough. The scaling behavior may also be regarded as a quantum, magnetic analogue of the critical Casimir effect which has been widely studied for classical phase transitions.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3