Abstract
Abstract
Measurement-based quantum computing (MBQC) is a promising approach to reducing circuit depth in noisy intermediate-scale quantum algorithms such as the variational quantum eigensolver (VQE). Unlike gate-based computing, MBQC employs local measurements on a preprepared resource state, offering a trade-off between circuit depth and qubit count. Ensuring determinism is crucial to MBQC, particularly in the VQE context, as a lack of flow in measurement patterns leads to evaluating the cost function at irrelevant locations. This study introduces MBVQE-ansätze that respect determinism and resemble the widely used problem-agnostic hardware-efficient VQE ansatz. We evaluate our approach using ideal simulations on the Schwinger Hamiltonian and XY-model and perform experiments on IBM hardware with an adaptive measurement capability. In our use case, we find that ensuring determinism works better via postselection than by adaptive measurements at the expense of increased sampling cost. Additionally, we propose an efficient MBQC-inspired method to prepare the resource state, specifically the cluster state, on hardware with heavy-hex connectivity, requiring a single measurement round, and implement this scheme on quantum computers with 27 and 127 qubits. We observe notable improvements for larger cluster states, although direct gate-based implementation achieves higher fidelity for smaller instances.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Measurement-Based Quantum Approximate Optimization;2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2024-05-27