Entanglement transmission through dense scattering medium

Author:

Huang Peng,Zeng Guihua

Abstract

Abstract Scattering effects are ubiquitous in practical wireless optical links. Here a transmission model with complete consideration of scattered light and beam wandering effects for underwater link is developed, with the aim to completely characterize the received quantum state of light through dense scattering medium. Based on this model, we show the influence of scattered photons on the improvement of the entanglement after transmission through turbid water may vary for different copropagation scenarios, i.e., the contribution of scattered light on entanglement transmission may be turned from positive to negative, with increase of the strength of underwater beam wandering. And the attenuation coefficient and aperture size are found to be the dominant factors affecting the entanglement through underwater link. While for the counterpropagation scenario, the scattered photons will severely deteriorate the entanglement transmission especially for the high-loss scattering links. These findings may shed light on quantum entanglement transmission and help to develop its applications through dense scattering medium.

Funder

National Natural Science Foundation of China

National key research and development program

Shanghai Municipal Science and Technology Major Project

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3