Highly efficient XUV generation via high-order frequency mixing

Author:

Khokhlova M AORCID,Strelkov V VORCID

Abstract

Abstract The efficient generation of the coherent XUV light via frequency conversion of intense laser drivers is a problem of both fundamental and technological importance. Increasing the intensity of the generated high harmonics by raising the intensity of the driving field works only up to a point: at high intensities, rapid ionisation of the medium limits the conversion efficiency. Considering the combined effect of the phase-matching and of the blue shift of the driving field during its propagation in a rapidly ionising medium, we show that the latter can be the dominant limiting mechanism. We introduce a new spatial scale, the blue-shift length, which sets the upper bound for the quadratic intensity growth of the generated harmonics. Moreover, we show that this seemingly fundamental restriction can be overcome by using an additional generating weak mid-IR field. For specific combinations of frequencies of the generating fields, the corresponding high-order frequency-mixing process does not suffer from the blue shift of the drivers and phase mismatch, and thus its efficiency grows quadratically with propagation distance. Our results thus open a new route for highly efficient generation of coherent XUV light.

Funder

Russian Foundation for Basic Research

Alexander von Humboldt-Stiftung

Russian Science Foundation

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3