Twisting waves increase the visibility of nonlinear behaviour

Author:

Richard Grace,Lay Holly S,Giovannini Daniel,Cochran Sandy,Spalding Gabriel C,Lavery Martin P JORCID

Abstract

Abstract Nonlinear behaviour for acoustic systems is readily measured at high acoustic pressures in gasses or bulk materials. However, at low acoustic pressures nonlinear effects are not commonly observed. We find that by phase structuring acoustic beams, one observes evidence of nonlinear behaviour at an acoustic pressure of 66.78 dB lower than non-structured beams in room temperature air. A bespoke 28-element ultrasonic phased array antenna was developed to generate short pulses that carry orbital angular momentum and are propagated over a short air channel. When sampling small areas of the wavefront, we observed a distinctive change in the frequency components near phase singularities. At these phase singularities the local propagation path is screwed, resulting in the collection signals from pulses travelling along different paths across the aperture of a microphone. The usually negligible frequency chirping that arises from nonlinear behaviour in air interfere at these singularity points and produce a distinctive distortion of the acoustic pulse. Simple physical movement in the system or super-sonic wave speeds do not yield similar results. Such distortions in measured frequency response near phase singularities could lead to errors for SONAR or acoustic communication systems, where received signals are integrated over a finite-area detector. With further development this behaviour could potentially lead to accurate measurement techniques for determining a material’s nonlinear properties at lower acoustic pressure.

Funder

Royal Academy of Engineering

Scottish Universities Physics Alliance

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3