Abstract
Abstract
Understanding the physical processes that determine the relaxation T
1 and dephasing T
2 times of molecular spin qubits is critical for envisioned applications in quantum metrology and information processing. Recent spin-echo measurements of solid-state molecular spin qubits have stimulated the development of quantum mechanical models for predicting intrinsic qubit timescales using first-principles electronic structure methods. We develop an alternative semi-empirical approach to construct Redfield quantum master equations for molecular spin qubits using a stochastic Haken–Strobl theory for a central spin with fluctuating gyromagnetic tensor due to spin-lattice interaction and fluctuating local magnetic field due to interactions with lattice spins. Using two vanadium-based spin qubits as case studies, we compute qubit population and decoherence times as a function of temperature and magnetic field, using a bath spectral density parametrized with a small number of T
1 measurements. The theory quantitatively agrees with experimental data over a range of conditions beyond those used to parameterize the model, demonstrating the generalization potential of the method. The ability of the model to describe the temperature dependence of the ratio
T
2
/
T
1
is discussed and possible applications for designing novel molecule-based quantum magnetometers are suggested.
Funder
Fondo Nacional de Desarrollo Científico y Tecnológico
Air Force Office of Scientific Research
Agencia Nacional de Investigación y Desarrollo
Subject
General Physics and Astronomy