Abstract
Abstract
Quantum backaction disturbs the measurement of the position of a mechanical oscillator by introducing additional fluctuations. In a quantum backaction measurement technique, the backaction can be evaded, although at the cost of losing part of the information. In this work, we carry out such a quantum backaction measurement using a large 0.5 mm diameter silicon nitride membrane oscillator with 707 kHz frequency, via a microwave cavity readout. The measurement shows that quantum backaction noise can be evaded in the quadrature measurement of the motion of a large object.
Funder
European Union’s Horizon 2020 research and innovation program
ERC
National Natural Science Foundation of China
Academy of Finland
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献