Observation of phase synchronization and alignment during free induction decay of quantum spins with Heisenberg interactions

Author:

Vorndamme Patrick,Schmidt Heinz-JürgenORCID,Schröder ChristianORCID,Schnack JürgenORCID

Abstract

Abstract Equilibration of observables in closed quantum systems that are described by a unitary time evolution is a meanwhile well-established phenomenon apart from a few equally well-established exceptions. Here we report the surprising theoretical observation that integrable as well as non-integrable spin rings with nearest-neighbor or long-range isotropic Heisenberg interaction not only equilibrate but moreover also synchronize the directions of the expectation values of the individual spins. We highlight that this differs from spontaneous synchronization in quantum dissipative systems. Here, we observe mutual synchronization of local spin directions in closed systems under unitary time evolution. In our numerical simulations, we investigate the free induction decay of an ensemble of up to N = 25 quantum spins with s = 1/2 each by solving the time-dependent Schrödinger equation numerically exactly. Our findings are related to, but not fully explained by conservation laws of the system. Even if we cannot provide a full understanding of the phenomenon, it is very robust against for instance random fluctuations of the Heisenberg couplings and inhomogeneous magnetic fields. The observed synchronization is independent of whether the interaction is ferro- or antiferromagnetic. Synchronization is not observed with strong enough symmetry-breaking interactions such as the dipolar interaction. We also compare our results to closed-system classical spin dynamics which does not exhibit phase synchronization due to the lack of entanglement and since the fixed magnitude of individual classical spins effectively acts like additional N conservation laws.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3