Abstract
Abstract
Recent studies have pointed out the intrinsic dependence of figures of merit of thermodynamic relevance—such as work, heat and entropy production—on the amount of quantum coherences that is made available to a system. However, whether coherences hinder or enhance the value taken by such quantifiers of thermodynamic performance is yet to be ascertained. We show that, when considering entropy production generated in a process taking a finite-size bipartite quantum system out of equilibrium through local non-unitary channels, no general monotonicity relationship exists between the entropy production and degree of quantum coherence in the state of the system. A direct correspondence between such quantities can be retrieved when considering specific forms of open-system dynamics applied to suitably chosen initial states. Our results call for a systematic study of the role of genuine quantum features in the non-equilibrium thermodynamics of quantum processes.
Funder
Engineering and Physical Sciences Research Council
Horizon Europe EIC Pathfinder project QuCoM
H2020 Future and Emerging Technologies
Leverhulme Trust
BAGEP Award of the Science Academy.
Department for the Economy Northern Ireland
The Scientific and Technological Research Council of Turkey
Royal Society
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献