Evidence for temporary and local transition of sp2 graphite-type to sp3 diamond-type bonding induced by the tip of an atomic force microscope

Author:

Hofmann Thomas,Ren XinguoORCID,Weymouth Alfred JORCID,Meuer Daniel,Liebig AlexanderORCID,Donarini AndreaORCID,Giessibl Franz JORCID

Abstract

Abstract Artificial diamond is created by exposing graphite to pressures on the order of 10 GPa and temperatures of about 2000 K. Here, we provide evidence that the pressure exerted by the tip of an atomic force microscope onto graphene over the carbon buffer layer of silicon carbide can lead to a temporary transition of graphite to diamond on the atomic scale. We perform atomic force microscopy with CO terminated tips and copper oxide (CuOx) tips to image graphene and to induce the structural transition. A local transition induced by the force of the tip is accompanied by local rehybridization from an sp2-bonded to an sp3-bonded local structure. Density functional theory predicts that a repulsive threshold of 13 nN, followed by a force reduction by 4 nN is overcome when inducing the graphite-diamond transition. The experimental observation of the third harmonic with a magnitude of about 200 fm fits well to overcoming a force barrier of F barrier ≈ 5 nN, followed by a force reduction by −F barrier and an upswing by F barrier for decreasing distances. Experimental evidence for this transition is provided by the emergence of third harmonics in the cantilever oscillation when the laterally flexible CO terminated tip exerts a large repulsive force. Probing the sample with rigid CuOx tips in the strong repulsive regime shows a strong difference in the yielding of the A versus B sites to the pressure of the tip. The large repulsive overall force of 10 nN is only compatible with the experimental data if one assumes that the repulsive force acting on the tip when inducing the transition is compensated by a heavily increased van-der-Waals attraction of the tip due to form fitting of tip and sample by local indentation. The experiment also shows that atomic force microscopy allows to perform high pressure physics on the atomic scale.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference73 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3