Diagnosis of fast electron transport by coherent transition radiation

Author:

Liu YangchunORCID,Ning XiaochuanORCID,Wu DongORCID,Liang TianyiORCID,Liu PengORCID,Liu ShujunORCID,Liu XuORCID,Sheng ZhengmaoORCID,Hong WeiORCID,Gu Yuqiu,He Xiantu

Abstract

Abstract Transport of fast electrons in overdense plasmas is of key importance in high energy density physics. However, it is challenging to diagnose the fast electron transport in experiments. In this article, we study coherent transition radiation (CTR) generated by fast electrons on the back surface of the target by using 2D and 3D first-principle particle-in-cell (PIC) simulations. In our simulations, aluminum targets of 2.7 g cc−1 are simulated in two different situations by using a newly developed high order implicit PIC code. Comparing realistic simulations containing collision and ionization effects, artificial simulations without taking collision and ionization effects into account significantly underestimate the energy loss of electron beams when transporting in the target, which fail to describe the complete characteristics of CTR produced by electron beams on the back surface of the target. Realistic simulations indicate the diameter of CTR increases when the thickness of the target is increased. This is attributed to synergetic energy losses of high flux fast electrons due to Ohm heating and colliding drags, which appear quite significant even when the thickness of the solid target only differs by micrometers. Especially, when the diagnosing position is fixed, we find that the intensity distribution of the CTR is also a function of time, with the diameter increased with time. As the diameter of CTR is related to the speed of electrons passing through the back surface of the target, our finding may be used as a new tool to diagnose the electron energy spectra near the surface of solid density plasmas.

Funder

Shanghai Municipal Science and Technology Key Project

Strategic Priority Research Program of Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3