Predicting basin stability of power grids using graph neural networks

Author:

Nauck Christian,Lindner Michael,Schürholt Konstantin,Zhang Haoming,Schultz Paul,Kurths Jürgen,Isenhardt Ingrid,Hellmann Frank

Abstract

Abstract The prediction of dynamical stability of power grids becomes more important and challenging with increasing shares of renewable energy sources due to their decentralized structure, reduced inertia and volatility. We investigate the feasibility of applying graph neural networks (GNN) to predict dynamic stability of synchronisation in complex power grids using the single-node basin stability (SNBS) as a measure. To do so, we generate two synthetic datasets for grids with 20 and 100 nodes respectively and estimate SNBS using Monte-Carlo sampling. Those datasets are used to train and evaluate the performance of eight different GNN-models. All models use the full graph without simplifications as input and predict SNBS in a nodal-regression-setup. We show that SNBS can be predicted in general and the performance significantly changes using different GNN-models. Furthermore, we observe interesting transfer capabilities of our approach: GNN-models trained on smaller grids can directly be applied on larger grids without the need of retraining.

Funder

German Federal Ministry of Education and Research

Land Brandenburg

Deutsche Bundesstiftung Umwelt

Technische Universität Berlin

Deutsche Forschungsgemeinschaft

European Regional Development Fund

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference60 articles.

1. Paris agreement,2015

2. Introduction to focus issue: dynamics of modern power grids;Anvari;Chaos,2020

3. Self-entrainment of a population of coupled non-linear oscillators;Kuramoto,1975

4. The Kuramoto model: a simple paradigm for synchronization phenomena;Acebrn;Rev. Mod. Phys.,2005

5. The Kuramoto model in complex networks;Rodrigues;Phys. Rep.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3