Irreversibility, heat and information flows induced by non-reciprocal interactions

Author:

Loos Sarah A MORCID,Klapp Sabine H L

Abstract

Abstract We study the thermodynamic properties induced by non-reciprocal interactions between stochastic degrees of freedom in time- and space-continuous systems. We show that, under fairly general conditions, non-reciprocal coupling alone implies a steady energy flow through the system, i.e., non-equilibrium. Projecting out the non-reciprocally coupled degrees of freedom renders non-Markovian, one-variable Langevin descriptions with complex types of memory, for which we find a generalized second law involving information flow. We demonstrate that non-reciprocal linear interactions can be used to engineer non-monotonic memory, which is typical for, e.g., time-delayed feedback control, and is automatically accompanied with a nonzero information flow through the system. Furthermore, already a single non-reciprocally coupled degree of freedom can extract energy from a single heat bath (at isothermal conditions), and can thus be viewed as a minimal version of a time-continuous, autonomous ‘Maxwell demon’. We also show that for appropriate parameter settings, the non-reciprocal system has characteristic features of active matter, such as a positive energy input on the level of the fluctuating trajectories without global particle transport.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3