Author:
Liu Wenjie,Ke Yongguan,Zhu Bo,Lee Chaohong
Abstract
Abstract
Magnon excitations play an important role in understanding quantum magnetism and magnon bound states observed with ultracold atoms in optical lattices. Here, we investigate how gradient magnetic field and periodically modulated spin-exchange strength affect the two-magnon excitations. In the Stark resonance where the driving frequency matches and smooths the potential bias, the system gains translational invariance in both space and time in the rotating frame, and thus we can develop a Floquet–Bloch band theory for two magnons. We find a new kind of bound states with relative distance no less than two sites, apart from the conventional bound states with relative distance at one site, which indicates the modulation-induced long-range interaction. We analytically derive an effective Hamiltonian via the many-body perturbation theory for a deeper understanding of such novel bound states and explore the interplay between these two types of bound states. Moreover, we propose to probe modulation-induced bound states via quantum walks. Our study not only provides a scheme to form long-range magnon bound states, but also lays a cornerstone for engineering exotic quantum states in multi-particle Floquet systems.
Funder
The Australian Research Council
The Office of China Postdoctoral Council
The Science and Technology Program of Guangzhou
The National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献