Author:
Kakuyanagi Kosuke,Toida Hiraku,Abdurakhimov Leonid V,Saito Shiro
Abstract
Abstract
Interest is growing in the development of quantum sensing based on the principles of quantum mechanics, such as discrete energy levels, quantum superposition, and quantum entanglement. Superconducting flux qubits are quantum two-level systems whose energy is sensitive to a magnetic field. Therefore, they can be used as high-sensitivity magnetic field sensors that detect the magnetization of a spin ensemble. Since the magnetization depends on temperature and the magnetic field, the temperature can be determined by measuring the magnetization using the flux qubit. In this study, we demonstrated highly sensitive temperature sensing with high spatial resolution as an application of a magnetic field sensor using the quantum coherence of a superconducting flux qubit. By using a superconducting flux qubit to detect the temperature dependence of the polarization ratio of electron spins in nano-diamond particles, we succeeded in measuring the temperature with a sensitivity of 1.3 µKµ
Hz
−
1
at T = 9.1 mK in the submicrometer range.
Funder
Core Research for Evolutional Science and Technology
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献