Abstract
Abstract
We report on a novel mechanism of BCS-like superconductivity, mediated by a pair of Bogoliubov quasiparticles (bogolons). It takes place in hybrid systems consisting of a two-dimensional electron gas in a transition metal dichalcogenide monolayer in the vicinity of a Bose–Einstein condensate. Taking a system of two-dimensional indirect excitons as a testing ground of Bose-Einstein condensate we show, that the bogolon-pair-mediated electron pairing mechanism is stronger than phonon-mediated and single bogolon-mediated ones. We develop a microscopic theory of bogolon-pair-mediated superconductivity, based on the Schrieffer–Wolff transformation and the Gor’kov’s equations, study the temperature dependence of the superconducting gap and estimate the critical temperature of superconducting transition for various electron concentrations in the electron gas and the condensate densities.
Funder
Institute for Basic Science
Ministry of Science and Higher Education of the Russian Federation
Subject
General Physics and Astronomy
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献