Author:
Rama Koteswara Rao K,Suter Dieter
Abstract
Abstract
Nitrogen-vacancy (NV) centers in diamond have become an important tool for quantum technologies. All of these applications rely on long coherence times of electron and nuclear spins associated with these centers. Here, we study the energy level anti-crossings of an NV center in diamond coupled to a first-shell 13C nuclear spin in a small static magnetic field. These level anti-crossings (LACs) occur for specific orientations of the static magnetic field due to the strong non-secular components of the Hamiltonian. At these orientations we observe decoherence-free subspaces, where the electron spin coherence times (
T
2
*
) are 5–7 times longer than those at other orientations. Another interesting property at these LACs is that individual transition amplitudes are dominated by a single component of the magnetic dipole moment. Accordingly, this can be used for vector detection of microwave magnetic fields with a single NV center. This is particularly important to precisely control the center using numerical optimal control techniques.
Funder
European Union’s Horizon 2020 research and innovation programme
Deutsche Forschungsgemeinschaft
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献