Controlled multiple spectral hole burning via a tripod-type atomic medium

Author:

Tiaz Gul,Sadia Qureshi HaleemaORCID,Ullah ShakirORCID,Ghafoor FazalORCID

Abstract

Abstract In limit of saturation spectroscopy, we theoretically study the spectral hole burning (SHB) in the absorption spectrum of a probe field through a tripod atomic system. The response function for the probe field is calculated in a Doppler-broadened medium. Burning of spectral holes is observed only for the counter propagation of either one or both the coupling fields in the medium. The SHB is not observed below some critical temperature which is a condition for the electromagnetically induced transparency (EIT) in the medium. The most interesting and significant feature is that the Doppler broadening acts as a decoherence effect in case of EIT, however, the Doppler broadening acts inversely in case of SHB and consequently the burning effect enhances. The SHB is further enhanced and controlled by classes of the average velocity of atoms. The classes of high average atomic velocity in the medium increase the number of spectral hole burns (HBs). The widths of HBs can be controlled by the intensity of the driving fields. A single HB can be switched to multiple HBs in a well-controlled manner using different classes of high average atomic velocity. The various switchable holes can be burned in a desired position of the absorption spectrum which in turn simultaneously slow down multiple probe fields. The phenomenon of SHB may be useful in the construction of multichannel optical switching and storage devices.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3