Abstract
Abstract
Titanium nitride (TiN) thin films are used for the fabrication of superconducting devices due to their chemical stability against oxidization and high quality at interfaces. The high-pressure technique serves as a useful tool to understand the mechanical and electrical properties of materials, which is crucial for practical applications. However, high-pressure transport measurements of thin films are extremely difficult due to the limited sample space of high-pressure cells and the fragility of thin films. Here, we successfully carried out high-pressure electrical transport and Raman measurements on TiN films up to ∼50 GPa. The superconducting transition temperature gradually decreases with increasing pressure, which can be attributed to the decrease of electron -phonon coupling and is consistent with our first-principles calculations. In addition, the coexistence of a symmetry-enforced Dirac nodal chain and a nodal box is revealed by our calculations in TiN. Our work provides a promising way to study the physical properties of thin films at high pressure, which would broaden the high-pressure research field.
Funder
National Natural Science Foundation of China
Research and Development Program of the Ministry of Science and Technology of China
Strategic Priority Research Program of Chinese Academy of Sciences
Innovation Program for Quantum Science and Technology