Unique superdiffusion induced by directionality in multiplex networks

Author:

Wang XiangrongORCID,Tejedor AlejandroORCID,Wang Yi,Moreno YamirORCID

Abstract

Abstract The multilayer network framework has served to describe and uncover a number of novel and unforeseen physical behaviors and regimes in interacting complex systems. However, the majority of existing studies are built on undirected multilayer networks while most complex systems in nature exhibit directed interactions. Here, we propose a framework to analyze diffusive dynamics on multilayer networks consisting of at least one directed layer. We rigorously demonstrate that directionality in multilayer networks can fundamentally change the behavior of diffusive dynamics: from monotonic (in undirected systems) to non-monotonic diffusion with respect to the interlayer coupling strength. Moreover, for certain multilayer network configurations, the directionality can induce a unique superdiffusion regime for intermediate values of the interlayer coupling, wherein the diffusion is even faster than that corresponding to the theoretical limit for undirected systems, i.e. the diffusion in the integrated network obtained from the aggregation of each layer. We theoretically and numerically show that the existence of superdiffusion is fully determined by the directionality of each layer and the topological overlap between layers. We further provide a formulation of multilayer networks displaying superdiffusion. Our results highlight the significance of incorporating the interacting directionality in multilevel networked systems and provide a framework to analyze dynamical processes on interconnected complex systems with directionality.

Funder

Secretaría de Estado de Investigación, Desarrollo e Innovación

National Science Foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference31 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Super-diffusion in multiplex networks with long-range interactions;The European Physical Journal B;2024-06

2. Synchronization in multiplex networks;Physics Reports;2024-04

3. Superdiffusion induced by complete structure in multiplex networks;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-02-01

4. Coupling Asymmetry Optimizes Collective Dynamics over Multiplex Networks;IEEE Transactions on Network Science and Engineering;2023

5. Synchronizability of multilayer star-ring networks with variable coupling strength;Electronic Research Archive;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3