Performance enhancement of a proposed solar cell microstructure based on heavily doped silicon wafers

Author:

Salem Marwa S,Zekry A,Shaker AORCID,Abouelatta M,Abdolkader Tarek M

Abstract

Abstract This paper aims to present a proposed npn solar cell microstructure based on low cost heavily doped Silicon wafers. The physical perception of the proposed structure is based on the idea of vertical generation and lateral collection of light generated carriers. It should be mentioned that our structure can be utilized whenever the diffusion length of photogenerated electron hole pairs is smaller than the penetration depth of the solar radiation. The enhancement in the structure performance is attained by the optimization of the structure technological and geometrical parameters and based on practical considerations. This enhancement enables achieving the maximum possible structure conversion efficiency. Moreover, the optical performance, in terms of the spectral response and external quantum efficiency, is presented. The optimization is carried out using SILVACO TCAD process and device simulators. The main parameters used in optimization include the thickness and doping of the top n + layer as well as the sidewall emitter. Additionally, the structure base width along with the notch depth are considered. Finally, back surface treatment is introduced. The structure conversion efficiency in the initial step before optimization was 10.7%. As a result of the optimization process, the structure conversion efficiency is improved to about 15% above the initial case study by 4%.

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3