Hybrid liquid-metal heat dissipation structure enabled by phase transition for flexible electronics

Author:

Li Haicheng,Zhang HuilongORCID,Min SeunghwanORCID,Zhou Tao,Gong ShaoqinORCID,Feng XueORCID,Ma ZhenqiangORCID

Abstract

Abstract Flexible electronics incorporating built-in thin-film semiconductors with soft substrates allow devices or systems to conform to desired shapes, creating opportunities for various novel applications. High radio-frequency (RF) power flexible devices play significant roles in flexible wireless communication and other miniaturized microwave systems in the future. However, high power operations of devices generate a massive amount of heat, and if not dissipated effectively, the excessive heat can degrade the performance of flexible active devices and even cause irreversible damage to the systems. In this work, we present a hybrid heat dissipation structure that can be used in flexible electronics where significant heat dissipation is needed. The structure was designed with finite element method-based simulations with the goal of achieving both high heat dissipation efficiency and mechanical flexibility. The structure was fabricated using a phase transition technique, greatly simplifying the fabrication process without need of handling liquid in the fabrication process, and was tested on an ultra-thin flexible AlGaN/GaN high electron mobility transistor (HEMT). The maximum power handled by the heat-managed HEMT measured from the I DSV DS curve was 2.33 times larger than a reference HEMT without the heat dissipation structure. This demonstration opens new prospects for expanding the applications of flexible electronics toward high-power radio frequency regime in the future.

Funder

US Endowment for Forestry & Communities

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3