MoS2-functionalized conductive carbon heterostructure embedded with ferroelectric polymers for bipolar memristive applications

Author:

Das Nipom Sekhar,Jana Rajesh,Roy AsimORCID,Chowdhury AvijitORCID

Abstract

Abstract Heterostructures of two-dimensional layered materials, integrating two or more building blocks with complementing counterparts, can regulate the confinement and transportation of charge carriers via vacancy-induced defect and interfacial states. Herein, reduced graphene oxide-molybdenum disulfide (rGO-MoS2) nanohybrid were fabricated and reinforced with various polymers [poly methyl methacrylate (PMMA), poly (vinylidene fluoride) (PVDF), and PMMA-PVDF (20:80) blend] to study the resistive memory properties in a metal–insulator-metal configuration. The scanning electron microscopy analysis presents a hierarchical 3D flower-like MoS2 intercalated with rGO nanosheets. Transmission electron microscopy image exhibits MoS2 nanoflakes well interspersed and grafted on layered rGO sheets, forming sandwich heterostructures. Raman analysis shows a higher I D/I G ratio for rGO-MoS2 than rGO, demonstrating numerous defect states in rGO. The x-ray diffraction analysis of the polymer blend containing rGO-MoS2 exhibits β-crystal phases with a polarity-dependent internal electric field (E-field). The J-V characteristics of pure MoS2-polymer films display a write-once-read-many behavior with a current I ON/I OFF ratio of ∼102–103, in contrast to pristine polymer films exhibiting repeatable electrical hysteresis. Instead, the rGO-MoS2-based devices display bipolar characteristics (I ON/I OFF ratio of ∼103–104) due to charge transfer interaction with the conductive carbon substrates. The ferroelectric polarization-induced E-field coupled with the external bias is responsible for the improved memristive performances. A plausible conduction mechanism is proposed to discuss the carrier transport through the devices.

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3