Intensive study on gamma-irradiated PVA/FeCl3/NiO nanocomposites for promising applications: structural, optical and electrical

Author:

Zaghlool R AORCID,ElShawadfy S R,Mohamed FORCID,Abdel Moghny A S

Abstract

Abstract Tuning the optical parameters as well as the electrical conductivity of polymer composites is required to match the needs of optical and/or electrolyte-based energy storage devices. Depending on the choice of filler, the addition of small amounts of inorganic fillers to suitable polymers allows this target to be attained. In the present study, polyvinyl alcohol (PVA)/FeCl3/xNiO nanocomposites were prepared using the solution cast method. The structural, optical and electrical properties were investigated before and after irradiating the nanocomposites with gamma radiation at two doses, 300 and 400 Gy. Fourier transform infrared analysis confirmed the interaction of NiO with the PVA/FeCl3 matrix. The nanocomposites show a direct band gap that decreases from 2.47 to 2.25 eV as the NiO content increases from 0% to 7%, while the dc conductivity is increased from 9.15 × 10−8 to 8.46 × 10−7 S cm−1. After irradiation by 400 Gy of gamma radiation, the band gap of the PVA/ FeCl3/7%NiO nanocomposite is increased to 2.33 eV while the dc conductivity decreases to 1.19 × 10−8 S cm−1. On the other hand, the PVA/FeCl3 matrix shows low refractive index, 1.134 at 550 nm, which further increases to 1.213 as the NiO content reaches 7 wt%; this is reduced to 1.211 after exposure to 300 Gy of gamma radiation.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3