High-performance narrow spectrum green phosphorescent top-emitting organic light-emitting devices with external quantum efficiency up to 38%

Author:

Li Xiaokang,Liu Wenxing,Chen Kai,Wu Ruixia,Liu Guojun,Zhou LiangORCID

Abstract

Abstract In this work, we have experimentally demonstrated the efficacy of micro-cavity effect in realizing high-performance top-emitting organic light-emitting diodes (TEOLEDs). By optimizing the thickness of top Yb/Ag electrode and cavity length, highly efficient green TEOLED with external quantum efficiency as high as 38% was achieved. A strong dependence of electroluminescent (EL) performances and spectrum on cavity length was observed, and there was also a significant angle dependence of EL spectrum. Ultimately, ultra-high current efficiency up to 161.17 cd A−1 (3.2 V) was obtained by the device with emission peak at 552 nm, which is 35 nm longer than the intrinsic emission peak (517 nm) of utilized green emitter. Interestingly, this device displayed narrow emission with full-width at half-maximum of less than 20 nm, which was obtained by increasing the Ag layer thickness.

Funder

National Natural Science Foundation of China

Research Equipment Development Project of Chinese Academy of Sciences

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3