High-performance voltage controlled multilevel MRAM cell

Author:

Nisar ArshidORCID,Dhull Seema,Kaushik Brajesh KumarORCID,Mittal Sparsh

Abstract

Abstract In the recent past, spin-transfer torque (STT) and spin-orbit torque (SOT) based magnetic random access memories (MRAMs) have been studied for future energy efficient and non-volatile memory applications. Multilevel cell (MLC) design has emerged as one of the promising solutions to enhance the storage density of these MRAMs. However, the conventional MLC design adds a larger magnetic tunnel junction (MTJ) stack that makes it difficult to maintain low switching current and high speed. Moreover, it becomes very difficult to reduce the driver transistor size. This paper describes the application of voltage controlled magnetic anisotropy effect to design energy efficient and fast MLC MRAM cell. So far, this approach has been reported only in single-bit MTJ devices. In the proposed MLC the voltage control is able to reduce both SOT and STT switching currents. The results show that the voltage control in MLC enhances energy efficiency and switching speed by more than 80 times and 3 times, respectively, in comparison to conventional SOT based MLCs. The reduction in switching currents also achieves smaller transistor size and enhances area efficiency by 3.5% as compared to conventional SOT-MLC. The effect of different channel materials on SOT switching current has also been explored. Furthermore, the system level evaluation shows that voltage controlled MLC outperforms STT-MRAM and SOT-MRAM for designing cache memory.

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3