Thermal conductivity and phonon scattering of AlGaN nanofilms by elastic theory and Boltzmann transport equation

Author:

Huang Lihong,Fan Senping,Sang LiwenORCID,Mei Yang,Ying Leiying,Zhang BaopingORCID,Long HaoORCID

Abstract

Abstract Aluminum gallium nitride (AlGaN) plays an essential role in deep ultra-violet light emitting diodes and high electron mobility transistors etc. For example, 2 nm – 5 nm AlGaN nanofilms consist of the quantum wells in ultra-violet light emitting diodes, which have been attracting extensive attention since the rise of COVID 2019. Since most photons and heat are generated in these AlGaN nanofilms, the thermal properties of AlGaN nanofilms are strongly influenced by the heat dissipation of devices. In this paper, utilizing elastic theory and the Boltzmann transport equation, the phonon dispersion relations, density of states, specific heat capacities and thermal conductivities of 2 nm Al δ Ga1−δ N nanofilms with various δ are theoretically calculated at different temperatures. The thermal conductivity of nanofilm is significantly smaller than that of its bulk counterpart. In contrast with bulk AlGaN, due to the dominance of boundary scattering and alloy disorder scattering, the thermal conductivity of Al δ Ga1−δ N exhibits a similar dependence on Al concentration to bulk Al δ Ga1−δ N. Meanwhile, since the screening of Umklapp scattering, the saturation temperature of thermal conductivity is delayed from 50 to 100 K in bulks to about 300 K in nanofilms. The shrinkage of nanofilms’ thermal conductivity is also slower than for bulks. We believe that our work will be helpful in controlling the self-heating effect of devices based on AlGaN nanofilms.

Funder

Youth Innovation Foundation of Xiamen, China

Natural Science Foundation of Fujian Province of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3