Advanced supercritical fluid technique to reduce amorphous silicon defects in heterojunction solar cells

Author:

Chou Sheng-Yao,Lin Shih-Kai,Chang Ting-ChangORCID,Tsai Tsung-MingORCID,Huang Jen-Wei,Chen Shih-Wei,Shen Chang-Hong,Shieh Jia-Min,Lin Chao-Cheng,Yang Chih-Cheng

Abstract

Abstract The advanced supercritical fluid (SCF) technique was applied to reduce defects in the amorphous silicon thin-film layer and enhance the efficiency of a heterojunction (HJT) solar cell from 18.1% to 19.6%. An amorphous silicon thin-film layer has been used as a passivation layer between the substrate and electrode contact in HJT solar cells; however, many dangling bonds exist in the amorphous silicon thin-film layer. Therefore, the SCF technique was developed to passivate defects. The advantage of a supercritical state is high penetrability and low temperature. Thus, this SCF treatment can passivate defects in the completed device without changing the original fabrication process. After treatment, the passivation of dangling bonds was examined using Fourier-transform infrared spectroscopy, which confirmed the improved Si–H bonding. Moreover, electrical properties such as open-circuit voltage, short-circuit density, efficiency, shunt resistance, and leakage current were measured to confirm the enhancement. A simulated light source of 1 kW M−2 global AM1.5 spectrum was used to analyze the increase in cell efficiency, and the dark current was analyzed to confirm the leakage current improvement. Finally, a model for explaining the phenomenon in cells after treatment was developed.

Funder

Ministry of Science and Technology, Taiwan

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3