An efficient and facile method to develop defect-free OLED displays

Author:

Solanki AnkurORCID,Awasthi Asha,Unni K N NarayananORCID,Deepak

Abstract

Abstract Organic light emitting diodes (OLEDs) have captured the attention of the flat-panel display market owing to their high luminescence and versatile properties. However, substrate processing plays a critical part in the fabrication of OLED displays, demonstrated here as a passive matrix display, where plenty of defects, which appear during the processing stage, result in poor display quality and yield. Photolithography is the most common technique used to develop the electrode pattern on a transparent glass substrate. Nevertheless, poor lithography leads to display defects such as dead pixels, dark columns and bright horizontal rows. Moreover, shorts between anodes due to partial etching of the transparent conducting material or cathode lines are also common problems. Herein, we discuss a technique which drastically reduces the number of electrode shorts. Selective etching of the cathode in this technique makes the optical inspection of electrode shorts far easier due to the higher contrast ratio between Cr/glass compared to indium tin oxide/glass. Further, a focused laser beam is employed to ablate the identified shorts between two or more anode/cathode lines to make the short-free patterns. Additionally, a laser beam is also capable of isolating the burnt/dead pixels in a display, which otherwise lead to dark or bright lines during operation. Thus, our findings are very important for the display industry to develop defect-free panels and for the repair of certain operational defects to increase the production yield and lifetime.

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3