Fabrication, characterization, and gas sensing performance of chromium doped WO3 nanoflakes

Author:

Kılıç AlpORCID,Tekin BüşraORCID,Alev OnurORCID,Özdemir OkanORCID,Colakerol Arslan LeylaORCID,Büyükköse SerkanORCID,Özturk Zafer ZiyaORCID

Abstract

Abstract Pristine and chromium (Cr) doped WO3 nanoflakes (NFs) with various concentrations were successfully fabricated by a facile hydrothermal technique on alumina (Al2O3) substrates. The structural, optical, and morphological properties of these NFs were investigated by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-Visible diffusion reflectance spectroscopy (UV–Vis DRS), and x-ray photoelectron spectroscopy. Gas sensor tests were performed against various volatile organic compounds such as ethanol, xylene, toluene, and isopropanol gases in the temperature range between 50 °C and 250 °C. According to the results of these tests, the isopropanol sensing ability of WO3 NFs is enhanced with Cr-doping due to the increasing active adsorption sites on the surface and improved surface reactions with the decreasing band gap energy. The highest isopropanol sensing response which was calculated to be 77.1 has been obtained by nominally 2% Cr doping at the optimal operating temperature of 150 °C.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3