Hybrid low-dropout voltage regulator designed with TFET-MOSFET nanowire technologies

Author:

Tolêdo Rodrigo do NascimentoORCID,Martino Joao AntonioORCID,Der Agopian Paula GhediniORCID

Abstract

Abstract In this work, hybrid low-dropout voltage regulators (LDO) designed with a tunnel field-effect transistor (TFET)-MOSFET nanowire (NW) technologies are presented. The devices were modeled using Verilog-A with lookup tables based on experimental data of NW-TFETs and NW-MOSFETs fabricated in the same silicon vertical process flow. In all LDOs, the amplifier devices were biased with the same gm/I D = 9.5 V−1 for a maximum load current/capacitance of 1 mA/1 nF. In the hybrid regulators, the power transistors are designed with NW-MOSFETs to deliver the high load current, while the other devices are implemented with NW-TFET to provide high gain and low power consumption. Due to different onset voltages, two hybrid LDOs are proposed, one with symmetrical onset voltages implemented with a voltage shift (Hybrid-ΔV LDO) and one with a level-shift stage using the real characteristics of the devices (Hybrid-LS LDO). The hybrid circuits were compared to LDOs designed using only NW-TFETs and with only NW-MOSFETs. The Hybrid-ΔV LDO presents the best loop gain (62 dB) with a low quiescent current (7 nA), while the Hybrid-LS LDO shows a good gain-bandwidth product (700 Hz). In the transient analysis, the hybrid circuits showed a settling time close to the NW-MOSFET LDO but with higher undershoot/overshoot values in the case of a load transient. As demonstrated, the use of hybrid projects with TFET-MOSFET NW technologies enable LDOs with ultra-low power consumption and high loop gain, that are presented on TFET circuits and with a frequency response equivalent of MOSFET circuits.

Funder

CAPES

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference33 articles.

1. Advanced BiCMOS technology for high speed VLSI;Ikeda,1986

2. State of the art in the analog CMOS circuit design;Habekotte;Proc. IEEE,1987

3. Tunnel field-effect transistors as energy-efficient electronic switches;Ionescu;Nature,2011

4. Low-voltage tunnel transistors for beyond CMOS logic;Seabaugh;Proc. IEEE,2010

5. Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec;Choi;IEEE Electron Device Lett.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3