Abstract
Abstract
In this paper, we study the effect of solution pH in the hydrothermal synthesis and post-annealing treatment on the photocatalytic performance of hexagonal prism ZnO grown without a seed layer. By varying the precursor molarity ratio, the solution obtained was 6.88 (ZnO-2), 7.00 (ZnO-1), and 7.58 (ZnO-3). The three samples show hexagonal prism ZnO with wurtzite structures based on scanning electron microscope and x-ray diffraction analysis. ZnO-1 samples could degrade methylene blue as high as 65.9% for a UV irradiation time of 5 h, better than ZnO-2 (51.80%) and ZnO-3 (57.55%). Post-annealing treatment of ZnO-1 with the best photodegradation efficiency was carried out at 200 °C (ZnO-4) and 400 °C (ZnO-5) to alter the structure. The post-annealing treatment changes the domination of crystal orientation from (002) to (100) plane. Also, the morphology of ZnO-5 changed significantly to become smaller rods with a diameter of 2.79 μm, as compared to ZnO-1 (2.83 μm) and ZnO-4 (3.12 μm). It is due to ionic rearrangements occurring at higher temperatures. The ZnO-5 sample reduces methylene blue by 82.91%, which is better than ZnO-1 (65.9%) and ZnO-4 (64.39%). Interestingly, we found a relation between smaller rod diameters and higher photocatalytic activity. The results show the importance of the solution pH and the annealing treatment in improving the photocatalytic performance of hexagonal prism ZnO without the seed layer.
Funder
Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi
Subject
Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献