Exploration and optimization of novel replacement and prefetching strategies for inefficiencies of advanced MRAM-based hybrid cache systems

Author:

Han ShaopuORCID,Jiang YanfengORCID

Abstract

Abstract With the emergence of cutting-edge hardware systems such as cloud computing, edge computing, and on-chip neural network accelerators, how to design advanced memory strategies to substitute the traditional ones for maximizing the potential performance of non-volatile memory (NVM) under the existing hardware conditions, has become an urgent research issue for both academia and industrial communities. It is promising and innovative to improve computer systems in the layer of data exchanging with the emerging advanced semiconductor devices. In the paper, to address the inefficiencies of write-intensive, high power consumption, low hit rate and so on, which exist in hybrid magnetic random access memory cache systems, three novel cache replacement strategies and two cache prefetching strategies are put forward. The proposed triple novel replacement strategies, including historical frequency and time judgments, duplicate data-aware deletion, and dynamic relevance factors computing, can be utilized to compensate for the shortcomings of the traditional least recently used replacement strategy, respectively. In the two novel prefetching strategies, region distribution parameters and Listnet ranking network are imported into the caching process, respectively, to achieve optimized hitting performance. The simulation results demonstrate that the proposed replacement strategies can achieve up to 61.76%, 84.91%, 56.49%, and 53.21% optimization of write count, hit rate, dynamic power, and IPC compared to the conventional one. The proposed prefetching strategy can achieve up to 91.27%, 49.25% hit rate and IPC optimization. Meanwhile, the synthetic evaluation of the replacement and prefetching strategies are elaborated in the paper, including multi-core characteristics, information entropy, interplays and the performance constraints between replacement and prefetching mechanism, which would facilitate more credible ideas for future memory inefficiencies management and strategy design.

Funder

NSFC

Publisher

IOP Publishing

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3